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3. Introduction 

The world is full of wearable devices. Recent devices of interest, such as the FitBit and 

Apple Watch, provide the user with information regarding their heart rate and movement 

throughout the day. With these devices, users receive quantitative and qualitative information 

regarding their health. A key component of health is hydration. The prevention of dehydration 

has always been a vital part of survival, but a practical wearable device that is able to inform an 

individual of their relative hydration level does not currently exist. We propose the construction 

of a wearable device that, based on a baseline measurement, communicates to the user a relative 

hydration level and advises the user when to drink water to rectify low hydration levels. 

The main market for our proposed device is the average health conscious consumer. 

People who wear a FitBit, Apple Watch, or similar device for the fitness monitoring features are 

the main target for the device, and with millions of users, this device would become popular 

among these people. Additional markets for this device would be high performance athletes and 

military. Professional athletes need to maintain peak performance in order to properly do their 

jobs. Our device would ensure they are constantly aware of their hydration level and never 

allowing it to drop, especially off the field when their bodies are recovering.  The military also 

could use our device to ensure troops are staying properly hydrated during training and combat 

situations. Keeping people in the fight is crucial to military success, and hydration can be an 

enemy if not properly monitored. Heat exhaustion and heat stroke are real factors that can hinder 

a unit’s ability to fight in desert, jungle, and mountainous environments. Our device could be 

used by the Army, Navy, Marine Corps, and Air Force to ensure members are always staying 
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conscious of their hydration level to ensure they do not become casualties due to lack of 

hydration. Overall, the goal of our device, HydroWatch, is to give users the ability to accurately 

track their hydration and receive reminders and alerts when their level of hydration is dropping 

too low. 

We will determine relative hydration based on concentrations of water present in tissue 

on a person’s forearm. We will do this by interrogating the tissue with specific wavelengths of 

light, emanating from surface mount LEDs, chosen based on the absorption spectrum of water. 

The light will be scattered and absorbed by the tissue, and some of the light will be detected by a 

photodetector around 1 cm away from the LEDs. Water has a very distinct absorption spectrum 

that increases drastically in the near infrared (NIR) region. In this NIR region, water is the most 

absorbing component of human tissue. Therefore, light in this region at 970nm and 1200nm will 

be used to interrogate the tissue. We expect that if there is a larger concentration of water present 

in the tissue, then the reading from the photodetector will be lowered due to fewer photons 

incident on the detector. Since water is the most absorbing component in tissue at the NIR 

wavelengths, the amount of light reaching the detector from these wavelengths will change only 

when the concentration of water changes. 

 Another significant wavelength of light that is used in our device is 450nm. This 

wavelength is used to determine skin contact and whether we should trust data received during a 

test run. Blue light is highly absorbed by the melanin in human skin, so if the the device and blue 

LED are in close contact with the skin, the photodetector does not pick up any signal. However, 

if the device is not in close contact with the skin, some of the blue light will reflect off of the skin 

and be detected at the photodiode. This information tells the system that the gathered data was 
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not accurate as the device came off of the user. This mechanism acts to throw out any inaccurate 

data that would potentially give an incorrect reading of relative hydration level. 

When the board is powered on, the various wavelength LEDs begin flashing , 1.5 ms on 

0.5ms off, to send light into the skin to be detected at the photodetector. We can then connect the 

Bluetooth interface via a dongle on a computer system and export the data from the 

photodetector wirelessly. We can then process this data and allow the user to observe it using a 

MATLAB GUI which determines if the board was in good contact with the tissue and then 

informs the user of their hydration level relative to the control measurements that were 

conducted in the testing portion of our design cycle.  

Our final HydroWatch design met all of our original expectations, as were previously 

listed in our High Level Design documentation. Our main requirements for this project were to 

be able to interface with the two TI AFE4490 chips to set the flashing rate of the LEDs, receive 

photodetector readings via an SPI interface, have a stable Bluetooth interface to send data 

wirelessly from our board to an external processing machine, and have the ability to post process 

the data and notify the user of his or her hydration level. The HydroWatch program allows an 

impressive amount of control of the LED current values and photodetector gain amounts. Our 

program also provides a very stable Bluetooth interface to send data to the RSL10 Bluetooth 

Low Energy dongle, as well as allows us to establish a strong connection when the HydroWatch 

program is running.  

Due to the complex biochemical nature of hydration levels, our goals were difficult to 

meet because hydration is not something that can be easily quantified for every person in the 

same manner. Initial sponge tests to roughly simulate hydrated human skin provided good results 
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that allowed us to decide upon the wavelengths of light that we could use to be the most 

numerically significant in terms of hydration levels. HydroWatch is capable of demonstrating 

relative hydration levels in relation to the control group measurements that we conducted to 

determine a baseline hydration level. While we did have aspirations of being able to give 

information to the user about him or her becoming dehydrated, we found that hydration levels do 

not drastically change in short periods of time, and as such, it is still useful to have a relative 

hydration level to be compared to with multiple measurements throughout the course of the day. 

The GUI for HydroWatch also allows the user to easily use the project and a medium to visually 

capture the complex phenomenon of human hydration levels. Overall, we are quite pleased with 

HydroWatch’s ability to control the different wavelength LEDs and provide measurements and 

meaningful data surrounding the nature of hydration levels in the human body.  

4 Detailed System Requirements 

The basis of the system relies on the detection of absorbed light by water, 

deoxyhemoglobin, and oxyhemoglobin. We must design a system that is able to process multiple 

LEDS and capture real time data of the absorbency. This system ideally will be able to control at 

least four different wavelength LEDs at the same time and be able to accurately distinguish 

between the various wavelengths of light incident on the photodetectors while taking into 

account the ambient light that also may hit the photodetector at any given moment.  

As this project is intended to be wearable, the end goal for HydroWatch would be to be 

powered by a LiPo battery to allow for portability of the system. The user should also be able to 
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run the system off of a USB Mini-B cable, such that he or she can select to power the board off 

of either a USB or a LiPo battery. This requires a stable DC-DC converter be present on the 

board to take these different operating voltages and output the required 3.3V for the system. 

Seeing that the RSL10 draws around 30 mA when running its processor, the AFE4490 consumes 

70 mA to run the flashing logic and read photodetector values, and the LED currents will be in 

the range of 0-100 mA, a rough estimate for current usage in our project would be 300 mA in a 

worst case scenario for usage. The user should be able to use the board for at least one full day 

taking measurements. When not in use, the board must be able to go into a low power, sleep-like 

mode. The AFE4490 chips can be powered down with the use of a low signal on a digital output 

pin, while the RSL10 itself can be placed into sleep mode. In these modes, the collective current 

draw for the entire system would be 15 μA and would likely be in this mode for nearly 23 hours 

of the day, while the 300 mA current draw would be the active measurements, totaling a 

maximum of 1 hour. Because of these calculations, it can be seen that the battery capacity must 

be at least 600 mA-h. 

The AFE4490 requires that a stable serial peripheral interface (SPI) be created and 

executed such that 8-byte instructions can be safely sent and correctly received to and from the 

RSL10 microcontroller. The AFE4490 requires that the timing registers for when data samples 

are to be taken, LED flash rates, photodetector reading synchronization and the number of 

samples to take all must be correctly initialized for this project to work as expected. The 

AFE4490 must also be communicated to through SPI in order to set crucial design parameters, 

such as the intensity of the four wavelengths of light, the transimpedance amplifier gain to 

accurately represent the full dynamic operating range of the AFE analog to digital sample 
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conversions, the output reference voltage operating range, and the ability to both read and write 

commands to these chips is also dependent upon this stable serial peripheral interface. The AFE 

can handle SPI communications at up to 4 MHz, as the external crystal oscillator provides an 8 

MHz clocking signal which is then divided down to adequately handle and clock all of the 

instructions into and out of the AFE. The HydroWatch system also is required to be capable of 

placing the system into a low power and/or low current consumption mode, such that battery 

capacity and life can be preserved. 

 HydroWatch needs to have Bluetooth capabilities that will allow for at least 8 bytes of 

information to be sent at a time while also providing the user with a functioning distance of a 

reasonable range from the receiver. In an effort to combat possible noise in a crowded RF space 

because of all the available Bluetooth devices to pair with, HydroWatch must be able to be 

programmed such that the power to the antenna to transmit the Bluetooth information can be 

altered to find the maximized performance metrics. We also must have a receiver of some sort on 

the processing side such that it can convert the Bluetooth signals into utilizable data. In the 

RSL10, there is a built-in BLE interface and antenna. In the choice to use the RSL10, it became 

clear that these requirements were realizable to an extent, but with some minor modifications and 

clarifications. The output power to the antenna must be kept greater than 0 dBm (to allow for 

forward propagation of signal), the RSL10 BLE dongle must be used to receive the BLE signal 

and convert it into usable data on the Bluetooth Low Energy Explorer program, and within BLE 

Explorer, we were required to increase the transmit/receive power of the dongle to its maximum 

of +6 dBm in an effort to increase the functional range of HydroWatch. 
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For this project to be successful in this early prototype design, HydroWatch needs to have 

a form of external data processing to view and analyze the data received through the Bluetooth 

interface. This post processing tool must be able to parse through log files from the Bluetooth 

Low Energy Explorer software to extract the pertinent 8 byte photodetector readings. This post 

processing tool must also provide the user with the ability to graphically view the results of the 

photodetector readings in comparison to a baseline hydration level, which would ideally be set 

by an initial daily measurement by the user at the beginning of the day, as well as view the 

readings from the three other LED wavelengths to view the biologically significant information 

provided by each. The post processing tool should be able to use the reading and corresponding 

value of the 450 nm (blue) light to determine if HydroWatch is in sufficient contact with the 

user’s skin. If the user does not have the device in complete contact with his or her skin, the post 

processing tool must be able to determine this discrepancy and disregard the data recorded 

during that measurement while also notifying the user that they had poor contact between the 

device and their tissue. Similarly, this post processing tool must be able to take the photodetector 

reading from the 1200 nm LED, the most significant wavelength for determining water 

concentrations in the tissue through absorption, and notify the user that he or she is hydrated or 

dehydrated relative to his or her initial hydration level. The notification methods that should be 

realized by this post processing tool include sending text messages to the user with their 

hydration status, sending the user an email with the same information, and visually displaying 

the user’s hydration status on the post processing user interface in a clear manner.  

For this project to successfully determine the hydration status of the user, there must be a 

certain amount of testing put into action to ensure that the readings received from the 
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photodetectors are biologically significant. This testing must consist of testing multiple test 

subjects who are initially believed to be dehydrated. Then, after getting at least three baseline 

measurements of that test subject, the subject was instructed to drink what we deemed to be an 

almost excessive amount of water to completely differentiate the levels of hydration and 

dehydration of the user. After waiting upwards of 45 minutes to 60 minutes, the subject were 

tested again with the project and his or her relative hydration level had been affected in some 

noticeable manner. To accomodate for not all skin types being the same in terms of pigmentation 

or moistness, these tests should be conducted on many subjects of varying backgrounds beyond 

that of the HydroWatch group. To keep the testing as ubiquitous as possible, one should try to 

run these tests on the same area of each subject, namely the right forearm with the infrared 

photodetector closer to the elbow for the most certain contact and pressure applied to get viable 

readings. In running these tests, it must be ensured that the user has the system in contact with 

his or her skin completely, and if the 450 nm light does not register as a nearly zero 

measurement, the subject must retake the data in order for our testing to produce the most 

reliable results possible. To maintain consistent pressure, it is advised that one look at the 

reading from the 450nm LED. If these reading are roughly the same, approximately the same 

amount of light is being absorbed and thus somewhat consistent pressure is achieved. After 

conducting these tests, we need to be able to take these data points and be convinced that the 

photodetector measurement of the 1200 nm light actually corresponds to the test subject drinking 

water and rehydrating himself or herself.  

For this project to be wearable, we must ensure that no dangerous voltages or currents are 

present, as these can present serious health concerns for humans. There should be no exposed 
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wires on the final board design in an effort to make sure that these types of contact are not 

possible and the user is as safe as possible. This project needs to be able to lie in contact with the 

skin, and as such, design considerations must be made so that the LEDs and photodetectors are 

able to lie on the back of the board to be in sufficient contact with the tissue to be interrogated. 

Similarly, the LEDs and photodetectors should be far enough way that no crosstalk between 

different sources is possible, as well as the wavelengths of lights used should not be dangerous or 

damaging to human skin. The device itself must be very lightweight and also be able to fit in 

some configuration on a human wrist or arm. The device needs to be secured onto the user 

through the use of some sort of athletic band or other movement-restricting manner.  

 

 

5 Detailed project description 

5.1 System theory of operation (how the whole thing works) 

HydroWatch consists of one main board, which contains the RSL10 microcontroller, two 

AFE 4490 chips, four LEDs, two photodetectors, and selectable power inputs between 

Mini-USB and a LiPo battery. Once the main application code is downloaded correctly to the 

board using the J-Link by Segger, the RSL10 initializes the two AFE chips through SPI 

commands to have the correct timing registers and current settings for the flash rate and light 

intensity of the LEDs on the backside of the board. Then, the LEDs will flash at the 

predetermined rates and the user is expected to put the device on his or her forearm, such that the 

LEDs and photodetectors are flush against the skin. The photodetectors collect the various 
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wavelengths of the LEDs and convert the light into current, which is subsequently sent to the 

AFE chips to be discretized into voltage readings. These voltage readings are then sent via SPI 

communications back to the RSL10 microcontroller, which prepares the photodetector readings 

to be sent to the On Semiconductor Bluetooth Low Energy dongle via BLE.  

Once the RSL10 is put into Bluetooth Low Energy advertising mode, it will continuously 

update the values of the four LED readings every 100 ms. These values can be captured with the 

Bluetooth Low Energy Explorer software, provided by On Semiconductor. When a satisfactory 

number of data points have been collected from the main board to the dongle, the user can save 

the data in a log file format.  This log file is then parsed by the python files. Each line in the file 

is added to a list and then each string is search for the UUIDs of the LEDs (bec1, bec2, bec3, 

bec4). The 3 byte values from the LEDs are then added to another list. This second list is then 

used to write a comma separated value (csv) file based on LED identification number, the first 

byte of the reading, and the scaled 2 bytes value, the last 2 bytes of the 3 byte value. This csv file 

is then called by a MATLAB program and post processed to analyze the results.  After enough 

testing of the HydroWatch board on human test subjects, we theorize that we will be able to 

decipher a baseline for typical hydration levels in average adults. Using this threshold value, our 

program will be able to look at the incoming data from the LEDs and compare against this value, 

and can light up an LED on the main board that will let the user know whether he or she is 

hydrated enough.  

 

For the construction of the device, we set forth the following design rules: 
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AFE 4490 chips determine LED flash rates: Through SPI commands, the AFE 4490 

chips will be able to set how fast the LEDs will flash. Four different wavelengths of LEDs were 

used (450 nm, 660nm, 970nm and 1200nm) to get different absorptions of light in the skin. The 

450nm LED is used to sense skin contact. The 660nm and the 970nm LEDs are used to sense 

deoxygenated hemoglobin and oxygenated hemoglobin respectively. The 1200 nm LED will be 

used to detect water. Intensity should be enough to get past the epidermis and run through this 

deeper layer of tissue and be absorbed again at another point approximately 1 cm from the point 

of incidence.  

 

Photodiode captures light: The photodiodes will absorb the light from the LEDs that 

was sent through the skin and convert this light into a current that is readable by the AFE chips. 

We require two photodiodes, one to capture the light for the the 440nm(blue) and 660nm (red) 

LEDs, one to capture infrared light from the 970nm and the 1200nm LEDs.  

 

AFE 4490 chips receives signal from photodiode: The AFE will receive these current 

values and convert these currents into voltage values. The AFE will then provide the 

microcontroller with the voltage readings through SPI communications. 

 

Bluetooth mechanism: After receiving the voltage measurements, the RSL10 Bluetooth 

SoC repackages the data so it follows UART (universal asynchronous receiver/transmitter) 

protocol. The required data is send from the RSL10 microcontroller and to an external computer 

interface, in this case the Bluetooth Low Energy Explorer developed by ON Semiconductor. 
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After the desired amount of data is collected a log file is created. This log file is then parsed 

through using a python code which extracts the relevant voltage values and the corresponding 

LED identification codes. This information is saved in a csv file which will be sent to the 

MATLAB software for processing and user updates. 

 

Power Source: The device can either be powered by a Mini-USB or a LiPo battery. 

Power from the Mini-USB or LiPo battery is first passed through a DC-DC converter to ensure 

the 3.3V required to operate the device. 

 

MATLAB Software: A MATLAB GUI will allow the user to input preferred method of 

notification (i.e. text or email). The “track” button on the GUI will call log file to be parsed and 

generate the csv file with all the relevant data. This data is then displayed on the MATLAB GUI 

on three different graphs, one for each different characteristic measured (i.e. one for skin contact, 

one for pulse/hemoglobin, and one for water concentration.  Following MATLAB processing, 

the user will be emailed or texted a message with their hydration state and their hydration status 

will be displayed on the GUI.  

 

 

 

 

5.2 System Block Diagram 
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In the below figure, the system operation at a high level can be seen. 
 

 

Figure 1. System Block Diagram 

 

Subsystems List: LED/Photodetector System, RSL10/AFE SPI interface, RSL10 Bluetooth Protocol, 

MATLAB Post-processing and notifications 

 

5.3 RSL10 Communication with AFE4490 
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Figure 2: RSL10 Communication Diagram 

 

Subsystem requirements: The RSL10 must be capable of having two separate SPI 

interfaces to communicate with two AFE4490 chips, setting appropriate timing registers, LED 

intensity and allowing photodetector readings for specific LED wavelengths to be received for 

future use in the Bluetooth data transfer. 

The RSL10 was selected as our microcontroller on the basis that it had a built-in 

Bluetooth capability, alleviating the need for an external chip to be controlled by either I2C or 

SPI, saving digital input/output pins on our microcontroller, as well. Another positive feature of 

the RSL10 microcontroller is that it contains two SPI interfaces, and both interfaces are 

completely remappable to any digital I/O pins, which allowed us freedom in terms of layout of 

the final board as well as the ability to reduce our SPI traces down to only five traces total, as 

compared to what would typically require eight wires on another microcontroller with that has 

dedicated SPI pins, such as the PIC32, which was the other alternative microcontroller choice for 

this project. Other functions that led to our choice of the RSL10 were very low current sleep 
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modes, interrupt-driven wake-ups, powerful ARM-Cortex M3 processor for on-chip logic, C 

programming language compatibility and deceptively simple online documentation.  

This online documentation provided much of the information we needed, such as 

suggested components for power delivery and decoupling capacitors as well as different 

operating modes for the RSL10. However, the SPI interface and commands were not very well 

documented at all for the RSL10. Another difficulty with developing programs for the RSL10 is 

that the coding environment used is Eclipse RSL10 SDK. The program hierarchy and set-up 

were tedious and challenging to get figured out, but included with Eclipse were sample programs 

for the RSL10 evaluation and development boards, of which we had two at our disposal. We 

attempted to use an spi_master.c program to figure out how a basic SPI interface would be set up 

on the RSL10, but when we tried to alter the information that was sent, we were only capable of 

sending one 8-byte word before the program would crash. This led to contacting the On 

Semiconductor customer service department, who swiftly redirected us to the CMSIS-Keil 

Driver overview pages. Essentially, we ended up using low-level system driver calls within the 

ARM-Cortex M3 processor in the RSL10 to create our SPI interfaces.  

There was even more example code for this CMSIS driver technology, with the main 

program used to figure out the SPI interface being spi_cmsis_driver.c. This program makes 

low-level system calls to create the SPI interface. The program begins like most RSL10 

programs do, which is with an Initialize function initializing and waiting for the 48 MHz crystal 

to start up for the system to clock and register commands correctly. Then, the system clock is 

divided and prescaled for us in the program before digital I/O pins get defined as being either 

inputs or outputs and whether there needs to be any filtering or pull-ups on the pins. For each SPI 
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interface, there needs to be an IRQ, which is the Eclipse analog of an interrupt service routine. 

However, for our SPI interface, the IRQs exist only to avoid compilation errors and warnings, as 

the code that we have running on HydroWatch continuously runs without being interrupted by 

these routines. The main code of the sample program addresses the SPI interface with a spi#= 

&Driver_SPI#, spi#->Initialize(SPI#_Master_CallBack), and spi# -> Power Control 

(ARM_POWER_FULL). These commands allow the RSL10 to prepare SPI pin interfaces, with 

the pin definitions being completed in the included RTE_Device.h file, and then powering up 

those different pin configurations from the ARM processor.  

A typical SPI interface has four main signals, which are MISO (microcontroller input, 

slave output), MOSI (microcontroller output, slave input), CLK (clock), and SS (slave select). 

Typical functionality for an SPI interface is that the SS signal goes low, clock signals are sent out 

for a certain amount of data bits, which are sent over the MOSI line to the slave. To read data 

back from the slave, a similar stream of events take place, wherein data usually must be sent in 

order to receive information from the slave.  

The TI AFE4490 chips were selected due to their previous use in other senior design 

projects and the availability of the AFE4490 evaluation and development board, which included 

a pulse oximetry clip. Each AFE4490 can control the flash rates of two LEDs and is also capable 

of discretizing the current readings from one photodetector into a voltage reading between -1.2V 

and +1.2V. The typical application of an AFE4490 chip is in pulse oximetry, which essentially is 

just flashing red and near IR LEDs and trying to detect the pulsatile differences in blood flow in 

a fingertip. The AFE4490 can also control the light intensity of the LEDs, how many samples are 

taken per LED cycle, and taking ambient light values to be subtracted out later to allow us to 
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determine light contributions from single wavelengths. For our purposes, the AFE4490 presented 

an opportunity to select four different wavelengths of light that would contribute the most to 

being able to provide biological information about the hydration level of a human test subject. 

The exact wavelengths of light chosen and the rationale behind those decisions is discussed in 

the LED and photodetector subsystem explanation.  

There are two primary system calls that occur that allow the RSL10 to communicate via 

SPI to the AFE4490 chips. The two types of commands that can be used are “write” and 

“transfer”. Write simply sends the desired command to a specific register in the AFE, while 

transfer should send the address of the register to be read and consequently can receive the 

contents of that register when the AFE is in read mode. To create the “write” function, the SPI 

interface must be put into master mode, the chip select must be lowered, and the number of bits 

to send as well as the speed in bits per second must be specified. The speed that we selected for 

our data transfers was 100 kbps, which was fast enough for the 200 ms updates of the LED 

readings on the photodetector. Then, an unsigned character buffer has to be initialized to hold the 

different values that are to be sent, which are then sent using a simple spi#->Send(buffer, 

sizeof(buffer)) command followed by waiting for the SPI event to be completed before raising 

the chip select again, causing the SPI interface to go into inactive mode and no longer act as the 

master on the MISO, CLK, and SS lines. The required timing and typical waveforms for a write 

command are demonstrated below in Figure 3, from the AFE4490 datasheet.  
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Figure 3. AFE SPI Timing Diagram 

In a similar fashion, the “transfer” function consists of setting the RSL10 pins into active 

master mode by lowering the slave select, specifying number of bits to be sent and the speed to 

send them, and initializing a buffer for the data to be sent. The difference between “write” and 

“transfer” is that a buffer is also initialized for the received information from the AFE, which 

allows us to actually transfer the data using a spi#->Transfer(buffer, received, sizeof(buffer)) 

command. After waiting for the transfer to be completed, the SPI interface then sets the slave 

select high and takes the system out of master mode and puts the interface into inactive mode. 

The required timing and shifting of data is outlined below in Figure 4, directly from the 

AFE4490 datasheet. This diagram shows that in order to receive information back from the AFE 

chips, you must send 16 bits of useless information, which is more necessary simply because the 
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clock signal is only sent when the chip enable line is lowered, and those are the only times when 

data is actually transferred via SPI. 

 

  

Figure 4. AFE4490 Full  Serial Timing Interface 

But, the AFE4490 accepts 24-bit commands, with the first 8 bits representing the register 

address and the last 16 bits containing the data to be written to the register. To accommodate 

these command types, special functions were created, namely AFEwrite(), AFEwrite2(), 

AFEtransfer(), and AFEtransfer2(). The number two corresponds to the second AFE chip that is 

included in the interface, while the unnumbered functions correspond to the first AFE chip.  

The AFEwrite() functions take as inputs a two byte hex address of the register to be 

written to and also take six bytes of hex data as an unsigned integer to be the data to be written to 

the register address. The AFEtransfer() functions also take as an input the two byte hex address 

of the register to be written to as well as six bytes of “trash” hex data (0x000000), to be sent as 
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throwaway bytes simply to facilitate transfers from the AFE when it is put into read mode. The 

AFEtransfer() functions also must take a pointer to the receiving buffer for the data from the 

AFE.  

These two basic functions were then used to develop the more complex functions that 

help initialize the LED flash rates, the LED intensities, and whether the AFEs were in read or 

write modes. The AFEtimerinit() function sets up the various timers and conversion steps and 

ticks for the AFE to include when waiting to make measurements. The configAFE() functions 

controls important aspects of the AFE functionality, such as current gain, reference voltage 

settings, LED intensities, and transimpedance amplifier gains for the photodetector readings. The 

AFEreadmode() functions put the AFE into read mode by writing 0x000001 to register address 

0x00, which is the Control1 register of the AFE.  

The register address 0x22, which is the LEDCNTRL register for the AFE, sets the LED 

current settings, subject to what the reference voltage selected is. For our purposes, we used a 

TXREF voltage setting of 0.75V, and we selected different current settings according to the 

following equations. For each of the LEDs, we decided to have full-scale currents as large as 

possible, so for each LED1 and LED2, the corresponding maximized current value was around 

150mA through the LEDs. This decision was made based upon data collected in the lab set-up, 

which demonstrated that as the current through the LEDs increased, the differences between 

heavy water and normal water were much more noticeable at these higher current values. A full 

discussion of the LED wavelengths and selection of those wavelengths is provided in that 
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subsystem explanation section. 

 

Figure 5. AFE4490 LED Current Selection 

Another important register that gets set periodically throughout the program when one 

AFE is being communicated with is register address 0x23, which is the Control2 register, and the 

specific bit that needs to be set is bit 10, which enables a tristate mode for the AFE that is 

communicated with. This creates a situation where when an AFE is not being communicated 

with it should not control any of the shared communication lines while the other AFE is being 

communicated with. Once the AFEs are correctly initialized and the LEDs are flashing at the 

proper rates, both AFEs can be put into read mode so that the values that the photodetector 

registers can be read and transferred back to the RSL10. The registers that are being read in the 

main HydroWatch program are register addresses 0x2E and 0x2F, which correspond to 

LED2-ALED2VAL and LED1-ALED1VAL, respectively. The reading generated and stored in 

these registers are the photodetector readings of the LED values measured at the detector and 

subtracting away the ambient level of the LED from that reading. In this way, we can figure out 

exactly how much of a voltage is generated by each specific LED considering ambient light 
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readings, and we can thus figure out direct contributions from each wavelength. This allows us to 

pick specific wavelengths of light for the purposes of watching absorbing masses in the human 

body, such as water concentration, skin contact, oxygenated hemoglobin, and deoxygenated 

hemoglobin.  

The photodetector current values get converted through an ADC into voltage values, 

according to the figure below Figure 6. In this way, the photodetector readings that we can 

retrieve from the AFE are discretized and can be calculated and graphed when these values are 

sent back to the RSL10 through the transfer functions to the RSL10.  

 

Figure 6. AFE ADC Discretization Scheme 

Hardware:  

The AFE 4490 has its own 8 MHz crystal oscillator, which helps facilitate all of the AFE 

timing and command executions. The AFE itself has minimal external decoupling capacitors  
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required, but the most important pins that we had to consider were the RESET, SPISTE, 

SPISIMO, SPISOMI, SCLK, and AFEPDN pins for basic functionality of the chips. The RESET 

and AFEPDN pins were active low, meaning that when the pins were grounded, the chip would 

either be reset or put into power down mode, which would not be ideal for continuous 

measurements being taken, so pull up resistors were required to keep these signals high until a 

digital I/O pulls the signal low to reset or power down the chips. The SPISTE, SPISIMO, 

SPISOMI, SCLK are the four pins that the SPI interface consists of. The other important pins of 

the AFE4490 are the TXN/TXP pins and the INN/INP pins. The TXN/TXP pins connect to the 

LEDs and are where the pulsed or flashing logic set in the registers of the AFE gets realized. The 

INN/INP pins are connected to the photodetector and are where the incoming current gets sent 

before the internal ADC of the AFE converts that current reading into a discretized voltage 

reading. These different systems and all the interfacing can be demonstrated and seen below in 

the simplified schematic, provided by the TI AFE4490 datasheet.  

Also included here is the actual schematic from the HydroWatch board in Figure 7. As 

can be seen, there are eight decoupling capacitors on various pins of the AFE4490 as well as a 

very important crystal oscillator with balanced capacitance to ground. Other features of the 
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hardware schematic that are important are the orientations of the two LEDs, which can be seen in 

the bottom right of the figure. The way that these LEDs are pulsed is pictured in one of the two 

operating modes of the AFE4490. We selected this orientation for the LEDs because this mode 

of operation was what the chips default to when reset. Thus, when the timing registers are 

properly set up, each of the LEDs takes a turn lighting up, but to the bare eye, it seems that the 

LEDs are constantly flashing on. This is facilitated through positive pulses being sent out, 

alternating between the TXN and TXP pins, which effectively selects which LED from the 

H-bridge configuration to be turned on at a specific time. In a similar way, the photodetector is 

connected to the AFE4490 by the INN and INP pins, with the INN side corresponding to the 

anode of the detector and the INP corresponding to the cathode of the photodetector.  

                                      Figure 7. AFE Hardware Schematic 
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Figure 8. AFE LED Configuration 

 

Subsystem testing: 

To gain initial understanding of the command formatting and interfacing with the 

AFE4490 from a very basic perspective, we used a PIC32 Kitboard from the Senior Design room 

to develop a simple SPI interface. This SPI interface used the same writing and reading type data 

transfers that we later developed for the RSL10, but we were able to hook up the PIC32 board to 

two separate AFE4490 breakout boards and see a pulse oximetry clip lighting up with the correct 

flash rate that was dictated by our register values. SPI interface functionality testing was aided by 

the extensive use of the Saleae Logic Analyzer, which allowed us to decode SPI transactions and 

figure out the required timing for our commands. Then, in order to demonstrate that register 

values could be read in real time from an AFE, we connected an LCD screen to the Kitboard, 
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which allowed us to see the register values in real time. We then read off the LED values from 

the pulse oximetry clip and were able to see the pulsatile nature of oxygenated hemoglobin, as 

measured by a near infrared light.  

After figuring out the entire interface and the correct commands to send from the PIC32, 

we had to develop the RSL10 interface. This interface was tested using the RSL10 development 

boards connected to a single breakout board that we created for the AFE4490. These breakout 

boards allowed us to set registers correctly and connect to the pulse oximetry clip that was 

included with the AFE4490 development board. To check proper SPI functionality, we 

extensively used the Saleae Logic Analyzer to decode the various SPI transactions and 

determined that one SPI interface was functioning well enough. Then, we developed a second 

SPI interface that shared the same pins for MOSI, MISO, and CLK, but had a different slave 

select line. We then hooked up the development board to two of the breakout boards for the 

AFE4490 and put the logic analyzer on the different signals and observed stable SPI 

communications on the RSL10 development board. By requesting register readings from both 

breakout boards at once and displaying them in the command window of Eclipse, we were able 

to successfully demonstrate two functioning SPI interfaces returning the expected register 

contents from the RSL10.  

One issue that we ran into in developing the RSL10 SPI interface was that there seemed 

to be a surprising amount of noise present on the MOSI line, meaning that the AFE response to 

the RSL10 master commands were not correct at all. Upon further inspection with the logic 

analyzer, there were many spikes on the MISO line, which meant that the correct commands 

were not being sent in the first place to our AFE chips. Even more concerning was the fact that 
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the noise on the MOSI line was almost an exact clock signal, which was enough to convince us 

that something was happening with interference from the two AFE chips fighting over the shared 

SPI lines. Due to the fact that the clock signal crossed over the MISO line, it seemed as if there 

was high frequency interference occurring, and the solution to this issue was figuring out how to 

tristate the AFEs such that when we were not communicating with an AFE, it would release 

control of the SPI lines and allow the other AFE to take over completely. This tristate register bit 

alleviated the issues with the SPI interfaces on the RSL10 development boards.  

On the full HydroWatch boards, we noticed a similar issue arise on the MISO line from 

the AFEs during SPI communications. At first, we believed that this issue might have arisen due 

to timing from the Bluetooth functionality of the program, such that data was being shifted out 

too quickly than was desired by the AFEs. However, upon further investigation into Bluetooth 

timing and attempting to increase the time between notifications as well as decreasing the time 

that the RSL10 is stuck in the advertising mode, but the issue persisted. We were able to observe 

the correct register values on the first AFE, but the second AFE register values exhibited the 

similar noise values reminiscent of the clock signal. This led us to inspect the board and try to 

figure out if the layout played a role in the issues. What we were able to determine was that the 

second AFE has its MISO line on the top side of the board crossing over the clock signal on the 

bottom side of the board at a right angle. Running the two SPI interfaces off the RSL10 

evaluation board and connected to the two AFE breakout boards, we were able to get stable 

register readings. But, when we downloaded the very same program to our custom HydroWatch 

board, the MISO issues persisted. We hypothesize that the crossing of these traces in that 

orientation has led to noise being always present on that line from the second AFE, and this 
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hardware issue is likely to remain unless future renditions of the boards feature clock signals on a 

different digital I/O pin of the RSL10 to avoid this crossing over of critical signals. In our final 

board, this noise was present only on the 970 nm LED, which is clear due to the 0xFFFFFF, 

which is the same as a clock signal overwriting very small or zero values. To correct for this, we 

would lay out a separate clock signal for the second SPI interface that does not cross underneath 

the MISO line, such that there would no longer exist this interference.  

 

5.4 LEDs and Photodetectors 

Subsystem Requirements: The wavelengths of LEDs selected for use in HydroWatch 

must correspond to biologically significant concentrations within the human body. The 

photodetectors must also be capable of converting the chosen wavelengths into a measurable 
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current value, such that the AFE4490 can then convert that reading into a usable voltage to be 

sent out via Bluetooth.  

Figure 9. LED and photodetector schematic and board layout  

As can be seen in the schematic of the HydroWatch board in Figure 9, two LEDs are 

connected in antiparallel fashion, such that the TXN and TXP traces from the AFE4490 can 

pulse each LED on and off. Also pictured in the schematic are the photodetectors, which are 

controlled via the INN and INP traces, which return current readings to the AFE4490. The board 

layout of these components is critical for receiving the actual signals that we desired. In order to 

account for possible surface reflections and keeping the source from directly entering the 

photodetector, the LEDs and photodetector were separated by 7.8 mm, which was discussed in 

Professor O’Sullivan’s Biophotonics course. Having this source-detector separation alleviated 

the possibility of direct interference from the source with the detector and forces the light 

emanating from the sources to go deeper into the skin in order to be detected. In this way, the 

layout on the board helped facilitate actual interaction with biological concentrations within the 

human body.  

The LEDs and photodetectors are placed on the back of the main HydroWatch board so 

that the user can comfortably place the device on their skin without having to worry about 

external light readings affecting the photodetector. The AFE4490 is only capable of discretizing 

two LED light readings from the photodetector. Because of this, we needed to minimize any 

sources of extraneous wavelengths of light from the photodetector. To accomplish this, the two 

pairs of LEDs and photodetectors were placed on the back of the board far away from each other 

and not in a direct line with the other’s sources. The photodetectors were also placed further 
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towards the edges of the board so that the other LEDs would interfere with readings as little as 

possible. These hardware decisions all were made for the sake of minimizing error due to 

extraneous wavelengths of light being present incident on the photodetector. Four wavelengths 

of LEDs were selected for use on the board. The first was a 450 nm LED, which was used to 

determine whether an adequate amount of skin contact was being made with the device. This 

LED was chosen because at this wavelength almost all light that is sent into the tissue is 

absorbed. This means that when the device is fully in contact with the skin, very low voltage 

values would be read by the AFE chip, and if the device was even slightly elevated off of the 

skin, relatively high voltages would be detected. We set the level to be that anything below 0.01 

uA of photodetector current would be categorized as good skin contact, while any readings 

above this value would be categorized as poor skin contact. Next, we utilized a 1200 nm LED for 

our water detection capabilities. As seen in Figure 10, the water absorption spectrum has a 

relative maximum at roughly 1200 nm. This means that change in the amount of 1200 nm light 

absorbed is based on changes in water concentration levels with in the skin. We selected this 

wavelength due to the relative peak in water concentration level, the lack of a similar peak in 

other molecules found in the human body such as hemoglobin and deoxyhemoglobin, and that 

using higher wavelength LEDs would have resulted in much higher cost which was not ideal due 

to the budget constraints on the project. The other two LEDs were 660 nm wavelength and 970 

nm wavelength. The data gathered from these LEDs was not as useful due to a number of 

factors. For the 660 nm LED, our intended goal was to use this to detect changes in hemoglobin, 

which has a relative peak in its absorption levels at this wavelength. However, to detect the 

changes in hemoglobin that change based on the heartbeat, we would have needed to be 
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sampling much faster than the once every 100 ms we were sampling at for our other LEDs. In 

order to fully capture an average heartbeat, our sampling rate would need to sample upwards of 

40 Hz, which is something that could be improved within our device at a later date. The 970 nm 

LEDs were chosen as another peak in the absorption spectrum of water was roughly at this value, 

shown again in Figure 10. Analyzing the data from this LED would have given us a second set of 

data points for water concentration levels, and given us more assurance about the hydration 

levels of the person. Unfortunately, our board layout consisted of a trace connected to the 970 

nm LED intersecting that with one of the SPI clock signals. This signal interrupted our attempts 

to capture data from the photodetector, which led to the information received being at 0 almost 

always, rendering it useless. In future iterations of the device this part of the board would have to 

be redesigned, which is covered in the To-Market Design Changes section of this report.  

  

Figure 10. Absorption Spectrum of Water 
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Two different photodiodes were selected for use on this device. The first was a 

TEMD5010X01 Si photodiode from Vishay Semiconductors,  which was used to detect the 

changes in light absorption for the 440 nm and 660 nm LEDs. The second photodiode was a 

MTPDP1346 InGaAs photodiode from Marktech Optoelectronics, which was used to detect the 

changes in light absorption for the 970 and 1200 nm LEDs. The surface mount photodetector 

was able to be soldered to the board normally. However, one week removed from demonstration 

day when we determined that the 1200 nm LEDs were showing more promising data than the 

970 nm LEDs, the only possible photodiode to measure this wavelength, the Marktech 

Optoelectronics photodetector, was a through hole component, and clearly would not be able to 

be soldered direct to the SMD pad on our board.  This resulted in a makeshift attachment to our 

board that allowed for the through hole photodetector to be attached to the board and soldered 

into the pads that were designed for a surface mounted photodiode. This did not appear to cause 

any issues in our results, but future boards should be updated to include a place for a through 

hole component, or surface mounted photodetectors of the same wavelength range should be 

obtained. An adjusted board design with the through hole component can be found on the team 

website. 

Subsystem Testing:  

In order to test surface mount device LEDs, we had to develop simple test boards with a 

similar layout and orientation that we would have on the final HydroWatch board. These test 

boards contained two LED footprints and one photodetector footprint, with the corresponding 

TXN/TXP and INN/INP header pins to control the LED current and read out the photodetector 

current. To create the footprint for the various LED sizes that we needed to test, the datasheets of 
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three different LED packages and suggested solder pads were compiled to create these LED 

footprints. The source-detector separation on these boards was 11.3mm, which is a significantly 

larger separation than the final HydroWatch board design. The further separation on these small 

test boards allowed us to conduct our various experiments and get even deeper measurements of 

the concentrations we were looking for. Once we had proven that these concentrations could be 

easily sensed with a very deep measurement, we settled for a smaller overall detection distance 

to save some space on the final board design.  

 

Figure 11. Simple LED and photodetector testing board  

We had three different tests setups that were used throughout this process before 

progressing to our entire system tests. Our first test was to establish that our LEDs were 

operational and to see what values of optical power they gave off at specific current levels. This 

allowed us to determine what current values we should use to obtain specific optical output 

levels for each of our LEDs.  Our second test used a series of cuvettes that contained two 

different liquids. One cuvette contained 2 mL of regular water, and one cuvette contained heavy 

water, which contains deuterium particles. These two substances, while appearing the same to 
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the naked eye, have differing absorption spectrums. This allowed us to shine light at specific 

wavelengths through each cuvette and see if the predicted values for the amount of current 

generated by the photodetector was in line with our theoretical results. This test allowed us to 

confirm that a water was able to be detected and that our wavelengths were correct for sensing 

changes in water compared to other very similar liquids. The final proof of concept test was to 

test the device on a sponge. We soaked a sponge in water, tested the value of light being read at 

the photodetector at several locations on the sponge and at several different current input values, 

and then averaged the recorded photodetector levels. This data can be seen in Figure 12. This test 

showed that even small changes in the mass of water present at the testing site was detectable by 

our device, and gave us confidence moving forward that we could detect these changes in water 

concentrations within a person.  

 

 

 

 

 

 

 

 

 

Figure 12. Sponge testing results for varying current and water concentration levels 
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5.5 Bluetooth Custom Protocol Communication 

 

 

Figure 12. Bluetooth subsystem block diagram  

 

Subsystem Requirements: Construct a custom bluetooth LE protocol that is specifically 

designed to broadcast the information from the SPI communication with the AFE4490s.  

 

As stated previously, the RSL10 was selected due to its small size and bluetooth 

capabilities. The custom protocol in place consists of over 60 files, many of which are specific to 

SPI communication and the RSL10 CMISIS driver. The custom protocol was written in C and is 

based on the prepherial_server_uart code that accompanies the RSL10 development board. The 

example code includes a battery service, receiver/transmitter uart and an example custom service 

that is looking at identifying TX/RX locations and addresses. We have taken the structure of the 
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custom protocol in terms of GAPP and GATT setup, and overhauled the code to communicate 

with the AFE chips and output 8 bytes of LED data. The battery service protocol is not called 

with in the code for this HydroWatch device, but can be found in the files due to the service 

being interwoven with the BLE stack created by the RSL10.  

At a high level, when the code is run the GAP and GATT stacks are initialized and 

constructed. The application itself is then initialized followed by the SPI. At this point, if no 

errors are detected, the device is set to advertise as “HydroWatch.” The system stays in 

advertising mode until a bluetooth connection is achieved. Once a connection is established, the 

application process, “app_process.c”,  is immediately started and the main function “app.c” is 

called. As long as the device remains in the connected state, the device will output the four LED 

readings from the subsystem above as determined by the custom protocol. The custom is set up 

to enable notifications to be advertised without the client, or external device, having to manually 

interrogate the peripheral, the HydroWatch device. 

Notifications are sent via the custom protocol send_notification() function. The 

photodiode values for the notifications are read within the “app_process.c” file. For insight in to 

how the LED values are generated and collected, please see the SPI and LEDs subsystem 

sections.  Once the values are collected, they are advertised by the peripheral (HydroWatch) to 

the client (an external machine) with unique UUIDs (bec1, bec2, bec3, bec4) and names (LED1, 

LED2, LED3, LED4). The construction and formatting of the custom protocol can be found in 

the ble_custom main and header files of the same name.  

Within ble_custom, we create our unique service. We start by creating a custom service 

message, or a unique identifier for the service when it is discovered by bluetooth enabled devices 
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known as clients. The GATT stacks are then set up and the service is setup to start broadcasting. 

If there is an issue in the stack, the program will go no further. If there is no issue, we release the 

identifiers of all the components of the custom service that are able to be read. In bluetooth, a 

service component can either be read, written to, or send out notification. A read requires both a 

request from the client and an accept from the peripheral. A write is a command from the client 

to the peripheral or device running the bluetooth. A notification is like a read in the sense that the 

device broadcasts a value, however, a notification does not require a request from the client. The 

peripheral automatically pushes out information based on what is written in code.  

 In our case, we release four different identifier in our custom protocol, LED1, LED2, 

LED3, and LED4, which hold the values from the four different LEDs on the HydroWatch 

board. We configure the components to be readable, writable, and to have the ability to send 

notifications to a client. In our application of the device, we rely upon the notifications to 

generate our data. The fastest that the ble can transmit data is every 10ms or at a frequency of 

100 Hz. For our purposes, notifications are sent every 100ms. The overall bluetooth code is 

based on the Bluetooth protocol already in place. This structure looks for all services present in 

the code and then constructs the GAPM stack as long as no errors are present. The system is then 

configured to have a unique identification number and addresses. The GAP deals with 

connectivity and advertising. All code related to the overall bluetooth is found in ble_std.c.  

After the service has been configured to be readable, writable, and to send notifications, 

we are ready to integrate into the overarching bluetooth and the AFE spi communication. The 

LED values from gathered from SPI are written into four different variables mentioned 

previously. These variables are then inverted to be sent over UART, so the reading directly to the 
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client will be in the proper order and will require little postprocessing.  Once these have been 

adjusted, the custom service is called to send the values directly to the bluetooth explorer 

program, discussed next, every 100ms.  

It is important to note that the functioning of the bluetooth is reliant upon the connectivity 

of the device. When testing the bluetooth, we performed tests exclusively in the Senior Design 

room. On demo day, we noted that the bluetooth connection was unable to maintain connectivity 

for prolonged periods of time. We theorize that this was due to all the competing devices in the 

room. For future projects that use bluetooth, we might suggest testing under different setting and 

looking into different antennas than the one we used.  

5.5 Postprocessing 

 

 

Figure 13. External processing subsystem block diagram  
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Subsystem Requirements: Information gathered by the previous subsystems should be 

transmitted to an interface that allows the end user to interact and track their relative hydration 

levels. The user should be able to subscribe to text or email updates so they are not tethered to 

the processing machine.  

The final subsystem is the external processing of the information coming out of the 

previously described subsystems. To establish the bluetooth connection, we made use of a 

RSL10 dongle. This dongle is manufactured by OnSemiconductors, the makers of our 

microcontroller the RSL10. We selected this dongle due to it ability to support both Master and 

Slave interactions with our device and it supporting multiple devices at once. A screen capture of 

the environment is seen below. 
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Figure 14. Screen capture of RSL10 dongle client explorer 

 

This dongle acted as a general central client that supported both slave and master 

information via a service call “Bluetooth LE explorer” that is put out to complement this 

particular dongle. In the case of our internal chip software, we only required the device to receive 

information for the HydroWatch via notifications sets in the program. These notification were 

collected in a terminal in the environment until we disconnected the device or the connect was 

interrupted. The terminal window is then saved as a log file.  

After generation of the log file, the file is passed to a MATLAB graphical user interface 

(GUI) , pictured below. 

 

Figure 15. Screenshot of the HydroWatch MATLAB GUI  

 

Once the track button is pressed, MATLAB does a system call of python to run a specific 

file called “parselogfile.py” written specifically for this application by our team. This files goes 

through and pulls out the six byte hex value of each LED notification that is compiled in the log 
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file. MATLAB was chosen as the language/interface for the post processing of the data due to 

familiarity with in the engineering community and ease of creation of a visually appealing GUI. 

MATLAB also has to ability to interface with a variety of different languages, including python, 

which is another language that the team is comfortable with.  

As mentioned previously in the custom protocol section, each LED reading has two 

leading bytes that serve as identification codes for the LEDs. These identification codes are 

filtered out, along with the two bytes of data, and a file of the following form is generated.  

  

Figure 16. File showing LED identifiers and output values   

 

This file is in turn is read back into the main MATLAB loop. The hex outputs from the LEDs are 

converted to a base voltage reading based on the quantization of the ADC local to the AFE chips 

(2^21). These conversions are then stored in a vector based upon the LEDs of origin. The system 

also checks to see if there is noise present in the readings, ie the AFE is giving a reading of 

0xFFFF or some reading above the saturation value of 1.2V. If noise is detected, it is cast to a 

voltage reading of 0V. Once all information from the LEDs as been converted, the data is post 

processed. LED 1 corresponds to the 450nm (blue) LED which was used to determine is skin 

contact was made.  If the reading in the 450nm led is greater than 0.2V for more than half of the 
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measurement time, the data is classified as bad contact and the user is alerted of bad skin contact. 

If good skin contact is made, we are then able to go on to determine our qualitative measurement 

of hydration. 

The reading for hydration comes from LED 3, the 1200nm LED discussed in the 

LED/Photodiode subsystem. Our system relies upon a baseline measurement that is intrinsic to 

the wearer of the device. For the sake of demonstration, we set the relative hydration level based 

upon reads of two HydroWatch members, seen below. 

 

 

Figure 17. Measured data of HydroWatch members’ hydration levels 

 

These measurements were taken after both members did not actively intake a gross amount of 

water for approximately 24 hours. This set the red baseline, which we defined as dehydrated. 

Both members proceeded to consume a few bottles of water and then waited an hour for the 

water to be processed by the body. The device measured the two members again, and we noted 

that they both dropped to approximately 20% for both individuals. This suggests that more water 

is present in the skin, because more light was absorbed. We define their final levels as hydrated. 
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We note that both members are roughly around .05V when they were dehydrated, thus for the 

sake of demonstration, our relative value was set at .05V as our threshold for a qualitative 

assessment of hydrated vs. dehydrated.  

At this point, the results are released to the end user both on the GUI and by text and/or 

email. On the GUI, the end user will see the plots of the data collected, while the texts and email 

update the user whether they are hydrated or not. Both the text and email updates are reliant upon 

the sendmail() function in MATLAB. The text updates rely upon the same principles that 

companies use to send out mass texts to their customers. Each phone number can be alerted by 

using the carrier mail handle (for example, @messaging.sprintpcs.com for sprint networks). This 

method sends a sms to any phone that one knows the carrier of via an email address that you 

have specified. Note that this is easiest done with a gmail account, but it must be an account in 

which the security settings can be altered to allow for MATLAB to log in and access the account. 

This user alerting code can be found on the team website. Note that it will not run for we have 

removed the password of our account from the code. If you are interested in running the code, 

please enter your own email and password. 

6 System Integration Testing 

 The coding for the SPI communication was run on the RSL10 evaluation boards with 

logic analyzers attached to see if SPI was sending out correct info from the RSL10 to the AFE. 

Once the communication between the RSL10 and the AFE was established, the AFE breakout 

boards were connected to the RSL10. A logic analyzer was used to see if SPI still received what 
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was expected based on the evaluation board testing. We used SPI to read in data from the 

photodetectors and send an identifier along with that data over Bluetooth to a computer via the 

Bluetooth Low Energy (BLE) dongle from ON Semiconductor. The BLE explorer was used to 

see basic registers being sent back and forth between the computer and the RSL10. The logic 

analyzer was used to see if there was any noise present in the connection between the AFE chips 

and the RSL10. Then we combined the Bluetooth peripheral server UART protocol and the SPI 

interface with initializations for AFE4490s into one code. The BLE explorer software displayed 

ambient LED values when we established what our baseline voltage values were. This baseline 

data ensured that the communication channels (SPI and Bluetooth) were working. We then 

gathered hydrated and dehydrated data from each of the HydroWatch members. Each time data 

was gathered, it was saved to a log file and imported to MATLAB. This data can be found on the 

website under “Documents.”  In the MATLAB code, the LED reading is converted and scaled. 

The skin contact of the device is a binary measurement based on the ambient light measurements 

and when the device is on the skin. There was a clear difference in voltage of the photodetector 

reading of the 1200 nm light when dehydrated and hydrated levels were compared. These results 

were used to establish a baseline for hydration within our post-processing environment. 

Everytime a new measurement is taken, the GUI is updates with voltage incident of the 

photodiodes for three of the four LEDs and the user is notified via text and email about their 

hydration status relative to the members of HydroWatch. 

The design requirements of the system required us to have effective LEDs and 

photodetectors that gathered data about the characteristics we wanted to measure, stable SPI and 

Bluetooth connections, as well as an effective user interface so the information that the user 
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wants to know is communicated. The testing of the LEDs, AFE, RSL10, and computer 

communication shows that we were able to achieve stable SPI and Bluetooth communication. 

The noticeable change in LED readings between skin contact vs. no skin contact and between 

hydrated vs. dehydrated means we selected LEDs with wavelengths that characterized hydration 

well. The MATLAB GUI display and the text and email notifications shows that we effectively 

communicate with the user relevant information about hydration.  

 

7 Users Manual/Installation manual  

Our product is still in the development stage and is not set for consumer release. Thus, we 

will use this section to discuss the set-up and running of HydroWatch as it currently stands in its 

development stage. Note that various programs need to be installed to run the product.  

7.1 How to install your product 

Before actual testing and programming of the board can be done, one must first download 

various software packages. Note that most of these packages operate solely on a Windows 

machine.  

 

Software Packages needed: 

- RSL10 Bluetooth Low Energy Explorer: Found on ONsemiconductors website 

- Eclipse bundle: Found on ON Semiconductors website under RSL10 development board 

- We suggest one also reads the accompanying user guide 
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- J-link debugger 

- Java: Note that configuration has to match eclipse (ie x32 or x64) 

- MATLAB: active license is required.  

- Python 3.x: Easiest to install Anaconda  

 

Download all the above packages in accordance with the prompts set forth by the manufacturers. 

Once that can been completed, one will need access to the HydroWatch files. After ensure that 

eclipse is properly set-up, add HydroWatch_UARTfresh to the work space. Build the eclipse 

project and check for errors. All needed files should be present and the code is commented for 

the user understanding. One may need to install the CMISIS driver from the RSL10 that is 

mentioned in the Getting Started With the RSL10 documentation that is provided by 

ONsemiconductors. Next, we have to create a debug session that runs off the j-link. Select the 

green bug on the menu and go to debug properties. Configure the session as seen in the below 

figures. 
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Figure 18.  Screen capture of proper debug mode set up 
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Figure 19.  Another screen capture of proper debug mode set up 

 

Test that the debug session launches and accept the terms and conditions. Now the HydroWatch 

programming environment is set-up, we can move on to installing the post-processing 

environments.  

 Launch the Bluetooth Explorer Environment, checking that the dongle is plugged in. 

Initialize the dongle, place into scan mode and check that you are receiving signals from 

bluetooth devices. Next launch the MATLAB GUI. Adjust the GUI to fit your screen by 
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launching guide in the command terminal. Finally open the python file parselogfile.py and check 

that the output log file included in the folder is parsed as you would expect with the value being 

a 2 byte (4 hex value) output. This has been found to differ based on the system one is using. To 

adjust this value, simple change the subtracted value in second loop in accordance with your 

needs. 

7.2 How to setup your product 

Once all the software has been installed and checked, one is ready to integrate the 

hardware into the system. The hardware needed to set up the system is listed below: 

 

Hardware needed: 

- Source of power: mini USB or litho battery 

- J-Link 

- HydroWatch Board 

- RSL10 dongle 

 

Take the HydroWatch board and supply power to the board. Next connect the J-link to 

the HydroWatch board and check the orientation on the J-Link board. The notch on the 

connector should face the inside of the debugger board.  You are now ready to program the 

board. If making changes to the board, it is best to run the system in debug mode by using the 

configuration we specified in the previous subsection. At this point you should be able to see the 

registers on the board being read into Eclipse. If the registers are not visible, there is a power 
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issue with either the board or the j-link and connections should be checked. If no errors are 

found, the development will go into ready mode. Press the green go button to start the CPU of 

the device, starting the bluetooth advertising. 

We now set up and check the Bluetooth connection. Place the dongle in an available 

COM Port. Open the Bluetooth Low Energy Explorer software and initialize the dongle on the 

appropriate COM Port. Place the explorer software into scan mode. You should now see the 

device “HydroWatch” being broadcasted. Select the device and click connect. At this point, the 

stack is called and you can now record information from the device by selecting “discover 

services.” If there are no issues in connectivity, the device will send four notifications every 

100ms. The data will be automatically compiled to the log file seen the bottom portion of the 

explorer. To save the log file, click save and save as “capture.log” in the location of the 

MATLAB GUI. This file will be read automatically when the track button on the MATLAB GUI 

is pressed. Before the GUI can be run, you will have to go in and change the email account that 

sends the updates out. The HydroWatch account is closed and not accessed by people outside the 

creators of HydroWatch. Open the GUI, enter text or email information and press track to check 

end to end functioning. 

7.3 How the user can tell if the product is working 

Determining if the device is not properly operating is fairly simple when going through 

the basic setup described above. You should see the red and the blue lights on the back of the 

board light up at rather bright intensities. The other two LEDs are IR and not visible with the 

naked eye. When in doubt, pull a logic analyzer out. Basic errors and checks are listed below. 
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Bluetooth: 

- Device is not connecting for long 

- There may be a fatal error that is not caught by the debugger. If no issues arose 

when launching debugger and pressing the “Go” button in Eclipse and you see no 

errors in the Eclipse terminal, then there is an issue in the custom protocol. 

- If a few notifications are logged but then the device disconnects, there is a 

connectivity problem. Check that the antenna has a clear view of the dongle, and 

in particular, for best connectivity, orient the antenna directly at the horn antenna 

of the RSL10 BLE dongle connected to your system’s COM Port.  

 

MATLAB 

- Follow the errors that arise in the terminal. Most likely a file is missing or misnamed.  

 

Eclipse 

- Target not detected 

- The J-link is improperly connected 

- Voltage regulator is not operating correctly  

- Note if the board is producing heat immediately unplug. You should check 

for any short circuit connections between the VDO power traces and 

ground connections, and you  may need to replace the TPS61201 part  

- 0xDEADBEE 
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- The J-link connection is messed up. Terminate the session and restart. 

- Debug fails to run 

- The .elf file is being run instead of debug 

- Eclipse is being weird. Close the program and reload 

- Warning files missing that are not missing 

- Eclipse is being weird. Close the program and reload 

- Should also go away as soon as debug is run  

 

LED values 

- AFEs are off when reading 0x__FFFF 

- There is noise or an issue the the AFE chip. Check for solder bridges and correct 

placement of oscillators. 

- The values should be between 0V and 1.2 V. If values are saturating, turn down the 

current in the spi.c file AFEwrite() function. 

7.4 How the user can troubleshoot the product 

If the user applies what is found above and compares results to that of HydroWatch, 

trouble shooting should be straightforward. Perform sanity checks on the LED readings to check 

that you are not reading back only noise. 
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8 To-Market Design Changes 

There are several improvements on the device that could be made before it would able to 

used by the average person. First, the overall size of the board and its components should be 

condensed. The board itself is able to be worn on the the arm currently, but it is very bulky and 

not a feasible size. If components on the board are placed closer together and some potentially 

unnecessary parts were removed, the device could be made to be a similar size as current market 

available devices such as a fitbit. Another component that would need to be improved is the 

battery. We are currently using a LiPO battery that is rather large and hangs off the board. 

Improving this would again lower the overall size of the device and increase its robustness. 

Additionally, increasing the sampling rate within the AFE would allow for additional tests to be 

done, including the attempted testing of a heartbeat and pulse oximetry measurements. While 

these were not the focus of our device, adding them to a final product would make it more viable 

for consumers to use. Furthermore, an app or similar notification system could be developed to 

allow for easier access to results. Currently connecting the device to a bluetooth program and 

then running the device through a MATLAB script is not the most user friendly way of giving 

results to the user. Additionally, using a surface mounted photodetector capable of sensing 

infrared light would be ideal and would eliminate the additional component to the board that we 

had to include.  

There are a few design considerations in terms of board layout that are considered here 

for future improvements to the project. Seeing that our SPI continued to demonstrate a noise 
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issue on the second AFE communication line to the microcontroller due to passing a clock signal 

underneath a trace, the final schematic and board reflect the changes required for the second 

clock signal to not become an issue any longer. The user would have to change the pin 

numberings in our RTE_Device.h file in the HydroWatch software in order to correctly initialize 

the digital input/output pins on the RSL10 to have the SPI interfaces where we desire them to be. 

Additionally, to account for the through-hole infrared photodetector that was jerry-rigged off the 

side of the HydroWatch board with leads soldered to the pads, the final HydroWatch board 

design contains a three-pin design so that this piece can be integrated into the board and not be 

floating off the side of the main board. In relation to the board is also the “wearability” aspect of 

the future of the project, which could use a fancier strap that is more ergonomic than a giant 

velcro strap that is as wide as the entire board itself. If the board were to be made even skinnier, 

the watch band options would be more comfortable on even the smallest of users’ wrists, and 

even more people could use HydroWatch and determine their own hydration levels.  

In terms of software or programming changes to the demo day version of HydroWatch, it 

would be very useful if the TX_START button were to be utilized with the proper interrupt 

functionality to start hydration measurements once the watch is in place, the entire program 

could be simplified a bit. With a set sampling rate, we would be able to determine the exact 

amount of data points to take, which would be triggered only when the button is pressed. 

Another change to the software and hardware of the project would be to place the TX_START 

button on the WAKEUP pad of the RSL10, which would allow our board to be placed into sleep 

mode and then correctly woken up to start the transmission of data only when required. This 

would save a significant amount of energy and also would preserve the quality and functionality 
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of our components. Another possible software change to be implemented to improve the overall 

project would be to implement the post processing logic on the actual internal storage and 

processor included in the RSL10. This would be rather straightforward, as the user’s first 

measurement of the day on the 1200 nm light could be used as the baseline and the rest of the 

measurements could be compared back to that baseline easily. Finally, the newest board versions 

contain LEDs on output pins, and when the internal processor determines that the user is 

hydrated, that light on the main board could be made to light up to signal very quickly to the user 

that he or she is properly hydrated in comparison with his or her initial baseline hydration 

measurement.  

 

9 Conclusions 

The device was an overall success. We accomplished all of the objectives that were 

outlined in the High Level Design for this project. This included the ability to utilize a 

microcontroller to determine LED flash rates and received signals from our photodiodes using 

SPI commands. We were also able to communicate this data over bluetooth for post processing 

within a Matlab script, and we created a well designed GUI that allowed for easy user interaction 

and notification of results. We ran into some issues along the way, and there were some changes 

that could be made to improve our design, as we touched on within this report, particularly 

within the To-Market Design Changes section, but overall we approached the problem correctly 

and achieved what we established to be our goals. We learned a lot from this project and will 

certainly apply this new knowledge and the skills we gained towards future projects. 
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10 Appendices 

Complete hardware schematics can be found at the HydroWatch Senior Design website: 

http://seniordesign.ee.nd.edu/2019/Design%20Teams/hydra/index.html#Documents 

 

Complete Software listings: 

- RSL10 Bluetooth Low Energy Explorer: Found on ONsemiconductors website 

- Eclipse bundle: Found on ONsemiconductors website under RSL10 development board 

- We suggest one also reads the accompanying user guide 

- J-link debugger 

- Java: Note that configuration has to match eclipse (ie x32 or x64) 

- MATLAB: active license is required.  

- Python 3.x: Easiest to install Anaconda  

 

Relevant parts or component data sheets: 

 

RSL10 dongle: 

(https://www.onsemi.com/pub/Collateral/RSL10%20USB%20DONGLE%20USER%20GUIDE.

PDF) 
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RSL10 Getting Started: https://www.mouser.com/pdfdocs/ONSemi_RSL10_Start.pdf  

 

AFE4490 Datasheet: http://www.ti.com/lit/ds/symlink/afe4490.pdf  

 

970 nm LED: https://www.tech-led.com/wp-content/uploads/2013/10/SMT970-232.pdf  

 

660 nm & 450 nm LEDs: https://www.lumileds.com/uploads/415/DS105-pdf  

 

1200 nm LED:  

https://www.digikey.com/product-detail/en/marktech-optoelectronics/MTE0012-095-IR/1125-13

29-ND/5872598  

 

SMT Photodetector: 

https://www.mouser.com/ProductDetail/Vishay-Semiconductors/TEMD5010X01?qs=sGAEpiM

ZZMtWNtIk7yMEsbNebl7bzYiWhNjZ6ipXWYQ%3d 

  

Infrared Photodetector: 

https://www.digikey.com/product-detail/en/marktech-optoelectronics/MTPD1346D-030/1125-13

64-ND/5870138  

 

TPS61201 (DC-DC Converter): http://www.ti.com/lit/ds/symlink/tps61200.pdf  
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Antenna Chip (2.4 GHz): https://linxtechnologies.com/wp/wp-content/uploads/ant-fff-chp-x.pdf 

 

FTSH Connector for J-Link Programming: 

http://suddendocs.samtec.com/catalog_english/ftsh_smt.pdf 
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